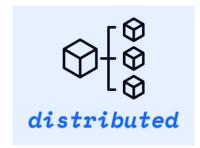
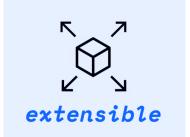
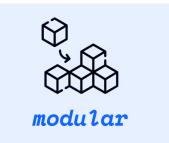


SoK: Unified Blockchain Data Structure

Natkamon Tovanich, Madalina I. Sas, Christophe Lebrun, Munthitra Thadthapong, William J. Knottenbelt, Arnaud Gaudinat, and Marco Mattavelli

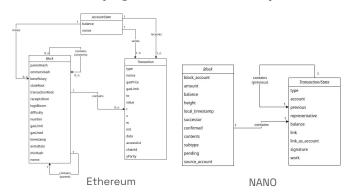



Unified Data Structure


Blockchain data is inherently accessible, but difficult to analyze due to the **lack of unified structure and standardisation**.

Our project goal is to build an open infrastructure which is **distributed**, **extensible and modular** based on the **FAIR** principles of open science.

To be able to **reproduce** research pipelines and provide **standardised** APIs, we require a **unified data format**.

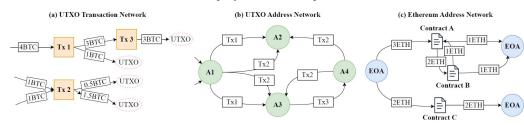

Challenges to Blockchain Data Unification

- Differences in operationalisation & architecture
 - Account vs UTxO vs other architectures (NANO, Cardano, etc)
- Tokens: Native assets vs Smart Contract tokens
- Interoperability:
 - Scaling solutions: Layer-2, Sidechains
 - Bridges, Exchanges
- Decentralised tools (dApps, DeFi, DAOs)

Theoretical Models

A Unified Data Model for Blockchains

(Meyer & dos Santos Mello, 2022)



Ethereum	Nano	Comments						
Block/parentHash	Transaction/previous	Hash of the previous block in the						
		chain						
Account/balance	Transaction/balance	Current balance of the account						
Block/timestamp	Block/local_timestamp	Timestamp of when the						
		block/transaction was mined						
Transaction/from	Transaction/source_account	Account that originated the transac-						
		tion (sender)						
Transaction/r,s	Transaction/signature	Cryptographic signature of the cre-						
		ator of the transaction (sender)						
Block/nonce	Transaction/work	Proof of work						

Mapping Similar Attributes in Ethereum and NANO

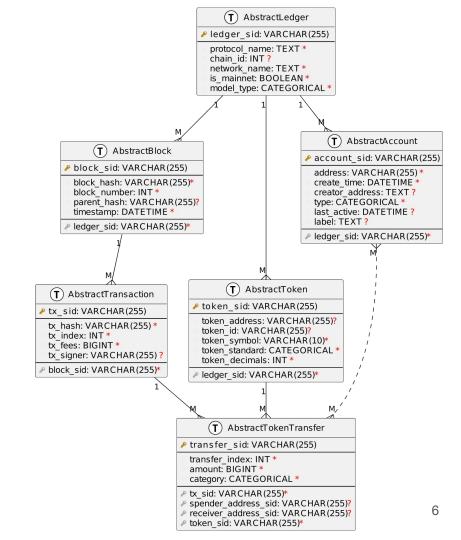
Blockchain Networks

(Akçora et al., 2022)

Chimeric Ledgers

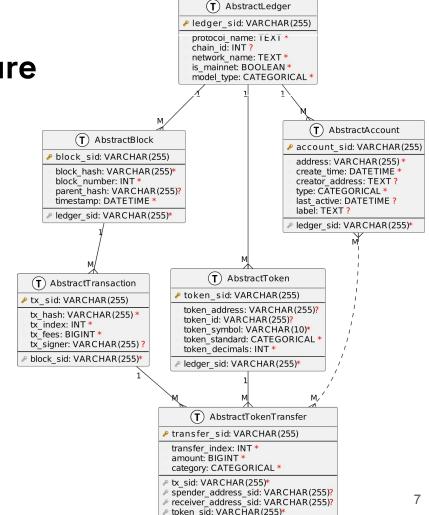
(Zahnentferner, 2018)

Open Source and Commercial Tools


	Raw Data				Decoded Data					Off-Chain Data		I		
Tool	# Chains	UTxO	EVM	Layer 2	Event Logs	ERC-20 Transfers	NFT Trades	DEX Trades	Bridges	Protocol-specific	Token Price	Entity Tagging	Query Endpoint	Backend DB
Node-as-a-Service														
Infura QuickNode Alchemy Moralis	19 60 38 18	1	111	111	С	✓ C C	✓ C C	C C		С	C C	/	JSON-RPC JSON-RPC JSON-RPC JSON-RPC	Unknown Unknown Unknown Unknown
Data Processing										151		-		N
Blockchain ETL Cryo	18 6	1	1	1		✓ C	✓ C						SQL Command Line, Python library	Google BigQuery Raw table files
Data Provider														
Blockchair BitQuery GoldRush Transpose The Graph (and Messari Subgraphs)	17 10 75 12 71	1 1 1		\ \ \ \ \	С	✓ C C ✓ C	C C C	C C	✓ C	✓ C	C /		JSON-RPC GraphQL JSON-RPC JSON-RPC, SQL GraphQL	Unknown Unknown Unknown Unknown Firehose
Data Query & Analy	tics Tool													
Blockscout Dune Analytics Flipside Crypto Footprint Analytics Allium	47 47 30 31 62	1	////		1	\ C \ \ \ \	✓ C ✓ C C	C C C	C C C	✓ C ✓ C	C C 🗸	\ \ \	JSON-RPC, GraphQL SQL, JSON-RPC SQL, JSON-RPC SQL, JSON-RPC SQL, JSON-RPC	PostgreSQL DuneSQL dbt, Snowflake SQL PostgreSQL, Snowflake, DataBricks, Bigquery, S3, GCS

Limitations

- Fragmented solutions
- No interoperability
- Not designed for research reproducibility
- Commercial cost barriers


Our Solutions

- Core idea: token transfers as atomic unit
- Use abstraction to focus on transfers
- Works across UTx0 & account-based systems
- Flatten UTx0 to store inputs & outputs as deposits & withdrawals

Abstract Unified Data Structure

- Ledger: general information about protocol, chain ID, network name
- Block: hash, number/hight, parent hash, timestamp
- Token: general info on native tokens or uniquely identify NFTs
- Transaction: general info such as hash, fees, index in block, signer(s)
- TokenTransfer: amount, index in Tx or SC, category, spender, receiver

Abstract Token Transfers & Transactions

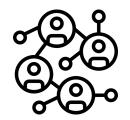
AbstractTokenTransfer

- Inspired by Chimeric Ledgers:
 UTx0 inputs → Deposits
 UTx0 outputs → Withdrawals
- Flatten multi-token Tx (e.g. ERC 1155) & transfers in SC
- Use spender/receiver address rather than Tx hash
- Capture the net effect of address balances across architectures

AbstractTransaction

- Enrich token transfers with contextual tables for ledgers, tokens, blocks, Tx
- Surrogate keys to identify data
- Store fields compatible with multiple chain architectures: hash, index, fees, signer

Applications


Unified data can facilitate the creation of reproducible research pipelines across chains for many use-cases, as well as easier cross-chain analytics.

Transaction & network statistics

Account Forensics & Anti Money Laundering (AML)

Token transfer networks

Discussion

Trade-offs

- Data volume
- Granularity vs simplicity
- Limited applicability for fine-grained provenance data (e.g. traces)
- Anonymity & privacy concerns
- Protocol evolution, forks, backwards compatibility
- Address extraction in UTx0 requires parsing whole chain history

Limitations

- No evaluation/benchmarking metrics applicable to all reviewed tools
- Lack of full access to all reviewed commercial platforms

Future work

- Implement unification pipeline (still in development)
- Develop evaluation metrics

FairOnChain is an ambitious European collaboration aiming to develop a publicly accessible infrastructure that enables easy access and searchability of **blockchain data** in accordance with the **FAIR principles of open science**. This infrastructure aims to promote complete transparency and reproducibility of scientific analysis results in the blockchain field, thereby facilitating the growth and collaboration of new and existing applications.

This project is based upon participation in the CHIST-ERA 2022 call for Open & Re-usable Research Data and Software (ORD).